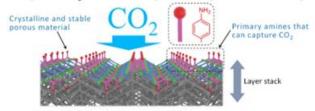


Principal Investigator

Institute of Science Tokyo Yoichi Murakami

Adopted Theme

Concept-proof of new generation CO2 capture materials using 2.5-dimensional COFs and the exploration of new applications


Subject of Research

Concept-proof of new generation CO2 capture materials using 2.5-dimensional COFs and the exploration of new applications

Overview

Ultrahigh-density primary amines regularly allocated in the nanopores

⇒ Simultaneous achievements of the high CO₂/N₂ selectivity and low heat of adsorption of CO₂, which are usually in a mutually exclusive relationship

- High thermal stability and crystallinity
- Extraordinarily large single-crystal size for COFs of ≥ 0.1 mm achieved
- Many potential applications possible due to the unique structure

Rooted on the world's first 2.5D-COF (COF = Covalent Organic Framework) technology we developed, we pursue the creation of a startup in cooperation with prospective customer companies to open up the practical frontiers of COFs. We will conduct a concept proof of a new generation solid CO2 separation materials that allow for economically viable implementations of CCS and CCU. We will also develop new applications for this material. We aim to develop a global startup that conduct the development, sales, and licensing of innovative CO2 adsorbents that contribute to the reduction of CO2 emissions, exploring the new domain of COF applications that answer the customer and social needs.

Business Models (when applying)

- 1. Material supply model: COF is sold to plant system and equipment manufacturers.
- 2. Technology licensing model: COF technology with secured intellectual property is licensed to domestic and overseas manufacturing companies.
- 3. Joint development model: We support the R&D and business development of customers utilizing our know-how, data, and R&D capabilities for materials development and production.

Activity Planning (when applying)

Our R&D activities include (1) improving durability against trace impurities contained in exhaust gas and demonstrating long-term durability, (2) establishing a scale-up production method for the material, (3) developing new uses for the 2.5D-COFs, and (4) developing new 2.5D-COFs from overwhelmingly low-cost feedstocks. Our activities related to business development include (1) conducting feasibility studies through collaboration with customer candidates and partners in the CO2 capture and separation field, (2) identifying potential customers and partners through conducting market research, and (3) formulating patent strategies to build robust patent portfolios.